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Version history 
 
Version This document RaBiGeTe 

050331 

• Added the AMLS test; 
• changed the DFT test; 
• added the parameters KSmin, ADmin and SLmax for the partial overall 

values while RaBiGeTe is running; 
• specified that the pval_digits affects only the p-value formatting; 
• few minor changes. 

• Added an improved version of the AMLS test; 
• improved the DFT test with a 2-D version; 
• added the partial KS, AD and SL calculation while RaBiGeTe is running; 
• fixed a rounding error bug for the optimized n in the DFT test; 
• the user can break the program by pressing the escape key; 
• changed “Test #xx” in “Sequence #xx”. 

050221 

• Added the coupon collector’s test, the NOTM test and the permutation 
test; 

• added the parameter IdlePriority; 
• revised §6.1 “Discrete Fourier Transform test”; 
• revised §5 “How to test the number generators”; 
• changed the minimum n for NOTM; 
• changed the file names in §3; 
• specified the syntax for InFile and OutFile parameters; 
• deleted the AMLS paragraph. 

• DFT function replaced with FFTW, added the parameter DFToptimize; 
• fixed a minor bug in short block test for big bit distances; 
• fixed a bug when parsing NOTM parameters with negative steps; 
• added another check in the coupon collector’s test; 
• minimum group size for the permutation test increased to 2 numbers; 
• added the parameter IdlePriority; 
• added a warning message for p-value = -1 when showpvals = 0; 
• allowed sequence length = 0 when an input file is specified; 
• few minor improvements; 
• the parsing routine has been moved in a separate module; 
• added “DHcheck” in the command line to test the DH tests; 
• an “usage” message is showed when no parameters are passed. 

040920 • / 
• Added the coupon collector’s test; 
• improved NOTM test: block size form 2 to 31 bits, templates created on 

the fly (with no memory allocation), changed the parameters to be more 
stringent; 

040828 • / 
• Added the permutation test; 
• now also the sorted p-values are printed only if valid (≠-1); 
• changed the order of the sorted p-values by SL; 

040826 

• Short blocks test changed with its generalized variant; 
• the step for the test parameters can be negative for increments of 2step; 
• added the parameters: TestName_pv  and pval_digits; 
• added suffixes for multiples of 1000 for the sequence length; 
• changed the parameter filename with InFile; 
• changed the name of the gorilla test, now it is SOB; 
• added the description of the SOB test; 
• added a brief general explanation of the Maurer’s test; 
• changed the version number convention (yymmdd). 

• AMLS test definitely withdrawn; 
• short blocks test replaced with its generalized variant; 
• the step for the test parameters can be negative for increments of 2step; 
• added the parameters: TestName_pv  and pval_digits; 
• added suffixes for multiples of 1000 for the sequence length; 
• changed the parameter filename with InFile; 
• fixed a minor bug in the NOTM test; 
• optimized for the speed: two-bit test (~61%), runs test (~27%) and 

cusum; 
• changed the name of the gorilla test, now it is SOB; 
• the sequence length is now unsigned; 
• some minor improvements; 
• changed the version number convention (yymmdd). 

2.01 
2004-05-29 • / • AMLS test disabled; 

• fixed a minor bug in Bday test. 

2.0 
2004-05-24 

• Added the windowed autocorrelation test; 
• added the wildcards for the bits file name; 
• added the test name meaning; 
• added the bits required for each test; 
• added sorting parameters by KS, AD, SL and the OutFile parameter; 
• added paragraph “Before starting” changing the program checking; 
• changed paragraph “Basic concepts”; 
• changed the range for NOTM and added the number of the templates; 
• improved the program test procedure; 
• specified that the test parameters are positive and that for n and DFT 

max the number can be floating point; 
• added the meaning of the return values when the program ends; 
• deleted “the user can change” in all the parameter section; 
• changed the font size; 
• changed the paragraph numbering. 

• Added the windowed autocorrelation test; 
• added the ability to use wildcards for the bits file (filename parameter); 
• added results with sorted p-values; 
• added the range check for rank 6x8 and NOTM; 
• added the OutFile parameter for the output file name (was 

“_RaBiGeTe.txt”); 
• n and DTF max can be floating point numbers; 
• added the bits file name in the output file; 
• improved the file parameter parsing routine; 
• fixed memory leakage in Short Blk; 
• before the program ends, it shows “Results saved in: [OutFile]”; 
• changed the format for the time (was [h:mm:ss.d] now is [hh:mm] or 

[mm:ss], but “Running time” is always [h:mm:ss.d]);  
• when n < 1024 the floating point n is no longer displayed in the header 

(was “n= 459 bits (459.000  b)” now is “n= 459 bits”). 

1.1 
2004-04-07 

• Added the range for NOTM and Long blocks; 
• changed the max bit distance for autocorrelation (was max ≤ n/2); 
• added the test file “bits.bin”. 

• Fixed the first template in NOTM for m=2 (was 00 instead of 01); 
• fixed test enable/disable; 
• fixed the seconds ≥ 60 in “End date” (now “Date end”, e.g.: 20:12:71) 

and changed the format for the time (was [sec.d] now is [h:mm:ss.d]); 
• added some parameter checking; 
• the program no longer checks the parameters of a disabled test; 
• saved the version number in “RaBiGeTe.txt”. 

1.0 
2004-04-03 First release. First release. 
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1 What my program does 

With RaBiGeTe the user can test a random or pseudo-random bit or number generator to see whether it 
has the characteristics expected in a true random generator. 
 
RaBiGeTe runs under Windows (in the DOS prompt). 
It includes the following tests: 
 

1. AMLS (an improved version of my old AMLS); 
2. DFT (the new 2-D version of my very sensitive test); 
3. Short blocks generalized variant (my test. A generalized version of the poker and monobit tests); 
4. Sparse Occupancy Bitstream (derived from the gorilla test of the Diehard suite); 
5. Windowed autocorrelation; 
6. Permutation; 
7. Coupon collector; 

 
8. Maurer (improved version of the Maurer’s universal statistical test); 
9. Autocorrelation; 

 
10. Serial two-bit (FIPS140); 
11. Blocks'n'gaps (FIPS140 Runs); 

 
12. Long blocks (NIST BlockFrequency); 
13. Runs (NIST); 
14. Cumulative sum (NIST); 
15. Serial (NIST); 
16. Non overlapping template matchings (NIST), my improved version; 

 
17. Rank for 6x8 matrices (Diehard); 
18. Rank for 31x31 matrices (Diehard); 
19. Rank for 32x32 matrices (Diehard); 
20. GCD (Diehard); 
21. Tough birthday spacings (Diehard). 

 
RaBiGeTe is highly configurable along with the test parameters. 
 
RaBiGeTe needs one or more binary file (supplied by the user) containing the bits to test. It is possible to 
use the wildcards to test several files. 
The user enables the tests he likes and he changes the test parameters using a configuration file (I 
included "para.txt"). 
In a DOS prompt the user writes: "rabigete para.txt" (without quotation marks). 
The program will save the p-values and the overall results in the file specified by the parameter OutFile 
(the default name is “_RaBiGeTe.txt”). 

2 Basic concepts 

To test a generator we check whether it has a certain characteristic that a true random generator would 
have. Each test calculates how much the inspected characteristic differs from the expected value and that 
difference is given as a number from 0 to 1 (called p-value). 
If a random generator were to produce a sequence of 100 consecutive zero bits we would be highly 
suspicious that it was a bad generator. However, although it is extremely unlikely, even a perfect random 
generator might do this so we can never be certain as a result of a test that a generator is bad.  Equally, 
even with a very good test of randomness, there is always a small chance that a bad generator will pass 
the test so we can never be certain that a generator is good. Nevertheless, if we run a given test a 
number of times and a generator systematically fails in a significant proportion of these tests, we can be 
highly confident that it is poor.  
We should hence run each test against a consistent number of sequences (usually 50 or 100 sequences) 
and look for anomalies both in the individual tests and in the statistics of the tests as a whole. 
If the sequences are random (or pseudo-random) we should obtain random (or pseudo-random) p-values 
from each test (this means that the p-values must be uniformly distributed). 
 

Version 050331 – 2005-03-31 Cristiano fecit anno Domini  MMIV  Page 3 of 19

 
 



RR AA BB II GG EE TT EE   
 

random bit generators tester 
 

Once the program terminated, we have, for example, 100 p-values for each single test (100 p-values for 
the DFT test, 100 p-values for the runs test and so forth).  
 
Now we need to see the extent to which the p-values for each test are uniformly distributed. A good 
choice is the Kolmogorov-Smirnov test. Calculating the K-S test over the p-values from each test, we 
obtain a significance level α. We could say:  
 

• if α > 0.01 the generator is good (for the tests we have used); 

• if α < 0.001 the generator is certainly bad; 

• if 0.001 < α < 0.01 we could run the test again until we don’t get one of the above 
conditions. 

 
This is not a rule, but just a practical suggestion. 
Obviously, testing 1000 sequences instead of 50 or 100, we will obtain a stronger “declaration” 
(remember that no test can declare good a generator). 
 
In this example I have tested 10 2-Mbits sequences using just few tests in the suite (I used just 10 
sequences because this is an example; in the real testing we should use at least 50 sequences). 
 
 
 

Test name 1 2 3 4 5 6 7 8 9 10 K-S  
DFT 1 0.0141 0.0209 0.0337 0.1303 0.0463 0.0017 0.0270 0.0078 0.0041 0.0036 0.0000 

Maurer 6 0.5702 0.7679 0.8160 0.1792 0.1703 0.0120 0.0999 0.6421 0.2826 0.9058 0.6565 
Maurer 8 0.9417 0.1641 0.4641 0.0431 0.6369 0.2907 0.9825 0.0114 0.4793 0.6053 0.9314 

Long blk 1024 0.3450 0.3272 0.5627 0.1804 0.6267 0.8304 0.5270 0.8505 0.9457 0.2087 0.8663 
Long blk 1536 0.3617 0.6120 0.4422 0.6805 0.2379 0.8573 0.5459 0.8026 0.7765 0.3032 0.5619 
Long blk 2048 0.5122 0.7242 0.6342 0.3290 0.3104 0.8429 0.6126 0.6660 0.6770 0.2197 0.6630 

Auto 4 0.6506 0.4942 0.9263 0.6655 0.8187 0.1956 0.5675 0.1651 0.5741 0.4304 0.6035 
Auto 12 0.4769 0.4191 0.5778 0.7518 0.8543 0.1923 0.5334 0.6318 0.8219 0.4011 0.2713 

Sequence number 
Systematic 

failure 

P-values 

 
In this example (obtained from a real generator) it is showed how to test a generator. 
Calculating the Kolmogorov-Smirnov test over the 10 p-values (one for each test), we see a systematic failure
with the DFT test. 

 Figure 1: 
 
 
 
It is clearly showed how the generator fails systematically the DFT test. In this case it is possible to say 
that the process which generates the sequences (the generator) has too much periodic patterns and that 
its output is not random. Testing just one sequence, we can clearly see that most of the times the 
generator seems good. 

3 Before starting 

It is a good idea to test the program to see whether it runs as expected. To do this, I included the files 
Test_files.zip and Test_vector.zip. Decompress these file in the RaBiGeTe directory and do the following 
two tests. 

3.1 First test 

This test is intended to see if the load routine works. 
1. In a DOS window write rabigete paraTST and press the enter key to run the program; 
2. after short time you should see: 
         !! LOADING ERROR !! 

File "bits3" 
Only 36864 bits have been read instead of 512000 

3. press any key to continue; 
4. the program shows the results and save them in the file _RaBiGeTe.txt. 
 
The p-values in _RaBiGeTe.txt must be identical to those in _RaBiGeTe_TST.txt included in Test_files.zip. 
Notice the line “!! WARNING !!   Only 3 sequence(s) have been tested.”. This is because in 
the file paraTST there is “NT 4” which means that the program should test 4 sequences, but the files 
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bits1, bits2 and bits3 are too short and only three sequences can be tested (see §4.1 for the parameter 
description). 

3.2 Second test 

This test is intended to see if the Diehard tests work. 
In a DOS window write rabigete DHcheck. 
When the program ends, compare the file _RaBiGeTe.txt with the file _RaBiGeTe_DH.txt; the p-values 
must be identical. 
 
Once the two tests are done, the archives Test_files.zip, Test_vector.zip and its decompressed files are 
no longer needed. 

4 How RaBiGeTe works 

The user should save in one or more files the bits (or numbers) to test. If there are several files to test 
(not necessarily of the same size), the user must use the wildcard like ‘*’ or ‘?’. For example, having 
bits01, bits02, …, bits99 in the “C:\random bits” directory, the filename parameter should be 
“C:\random bits\bits??” or “C:\random bits\bits*”. 
The program will load the files in alphabetical order (the file bits10 comes before of the file bits9, so it 
should be used: bits09, bits10). 
If the files are smaller than the expected size, RaBiGeTe will show an error message and it will show the 
overall results using the p-values calculated before the error. 

4.1 Parameter description 

To configure RaBiGeTe the user can change the configuration file (para.txt). It has several sections 
(enclosed in the square brackets) and its contents are case insensitive except for the unit of measure 
used with some parameter. 
Unless otherwise stated in the description, the parameters are treated as integer numbers. For the 
floating point parameters only the decimal point “.” is allowed (the decimal comma “,” is not allowed). 
The user can change the numbers (the test parameters) but not the parameter names. 
To facilitate the comprehension of the names, the user can puts a remark preceded by the character #. 
The program will discard anything follows the # character. 
 
The following is the list of the sections and the related parameters allowed (with an example of 
declaration and some remark). 
 

Section: [General] 
 
Parameter: n 1 Mb # Sequence length 
Description: sequences length (floating point). The user can writes just a number (like 1000000) to 

specify the length in bits, or he can use a unit of measure along with its suffixes and the 
b (bits) or B (bytes) unit too. The suffix can be: k (x103), m (x106), g (x109), K (x1024), 
M (x10242) and G (x10243). 

 For example, if NT= 50 and n= 1 Mb, the user should supply a 50-Mbits file (52,428,800 
bits). Writing “n .5 Mb” is the same as “n 512 Kb”. 

 Range: 20 ≤ n ≤ 232-1. 
 
Parameter: NT 100 # Number of sequences to test 
Description: all the tests enabled by the user will be executed NT times (will be tested NT n-bit 

sequences). I suggest to use NT ≥ 50. 
Range: 1 ≤ NT ≤ 231-1. 

 
Parameter: auto_n 1 
Description: if =1, n will be programmatically changed to run all the tests enabled by the user. For 

example, if the user enables the rank 6x8 test and n is 1 Mbits, the program will change 
n to 19,200,000 bits. 

 
Parameter: OverallTestNumber 0 
Description: if =1, RaBiGeTe will show the overall results relative to the test number (see §4.3). I 

suggest to leave 0 in this parameter (test skipped) because the p-values examined by 
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this test are heterogeneous; you can get a bad overall result even with good sequences (I 
included this test just because someone likes it). 

 
Parameter: SortKS 1, SortAD 0, SortSL 0 
Description: if =1, the overall test-name values will be sorted by K-S, A-D or SL (see §4.3). It is 

possible to set to 1 all the three parameters, in this case RaBiGeTe will show the overall 
result sorted by K-S, then by A-D and then by SL. 

 
Parameter: OutFile "_RaBiGeTe.txt" # Full path of the output file 
Description: this is the name of the output file (the one with the results). The path must be always 

enclosed in quotation marks. 
 
Parameter: InFile "bits.bin" # Full path of the input file 
Description: this is the name of the input file (the one with the sequences to test). The path must be 

always enclosed in quotation marks. 
 
Parameter: ShowPvals 1 
Description: if =1, RaBiGeTe will show the p-values during the test execution, while if =0, the p-

values won’t be showed on the screen, but in both cases they will be saved in the file 
OutFile. 

 
Parameter: TestName_pv 1 
Description: if =0, RaBiGeTe will write the OutFile using the format: p-value + [TAB] + test_name, 

while if ≠0 the format test_name + [TAB] + p-value will be used. 
 
Parameter: pval_digits 5 
Description: it is the number of decimal digits used to write the p-values. This parameter does not 

affect the calculations, it is used only for the p-value formatting. 
 
Parameter: IdlePriority 1 
Description: if ≠0, RaBiGeTe will run in idle priority. 
 
Parameter: KSmin .01, ADmin .01, SLmax 90 
Description: threshold for bad values (floating point). To obtain an useful answer, it is needed to test 

at least 50, 100 sequences (as suggested in §2) and this can take very long time. With a 
bad generator, many tests need just 5, 10 sequences to show the weakness. For this 
reason, when these parameters are enabled, RaBiGeTe calculates the “overall” values to 
see whether they are smaller than KSmin or ADmin or bigger than SLmax; in this case, 
RaBiGeTe will show a line with the calculated values (this line is not saved in the result 
file). If the values are too bad, the user can break the program (by pressing the “Escape” 
key) without wasting the time to complete the test of all the NT sequences. 
Range: 0 < KSmin, ADmin < 1; 
 0 < SLmax < 100; 

if KSmin, ADmin ≤ 0 or SLmax ≥ 100 the parameter is disabled. 
 

Section: [Enable] 
 
In this section the user can enable or disable the tests and he can change their execution order. Don’t 
change the names! 
Writing: 
 
1 DFT 
1 Short blocks 
0 Autocorrelation # This can be omitted being 0 
1 Serial 
1 Long blocks  # NIST's BlockFrequency 
 
RaBiGeTe will run DFT, Short blocks, Serial and Long blocks. But if the user likes to run the Long blocks 
immediately after the Short blocks, he just need to write: 
 
1 DFT 
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1 Short blocks 
1 Long blocks  # NIST's BlockFrequency 
1 Serial 
 

Section: test parameters 
 
Here the user can change the test parameters. Don’t change the names! 
The program will check all the parameters of the selected tests and it will show an error message if some 
of them is not valid. 
These sections can have from 1 to 4 parameters separated by anything which is not a number or the 
minus sign (‘-‘). These expressions: “1,2,3”, “ 1 2 3”, “1[tab]2,  abc de3” are all legal and they will return 
1, 2 and 3. 
When you see min max step, it means that the test parameter will vary from min to max with step 
step. For example, writing 4 12 4, the test parameter (which usually is the block size) will be: 4, 8 and 
12 (so that test will output 3 p-values). 
If not otherwise stated, step can be also negative. In this case the parameter will be multiplied by 
2-step. For example, if min=2, max=19 and step=-1, then the parameter will be: 2, 4, 8 and 16. 
Obviously, min can be also an odd number. For the example above, if min=3, the parameter will be: 3, 6 
and 12. 
 
Section: [DFT] 
max UM 
optimize UM 
min max step # ROWS 
m0  m1  # Mode 0, mode 1 
only the first max bits will be tested by the DFT test (UM is the unit of measure, see the “n” parameter in 
the “General” section). This is useful because when n is 50, 100 Mbits this test can take very long time 
(and much memory). Usually it doesn’t need too much bits to show weakness in a generator. 
If the sequence length is greater than optimize it will be optimized (truncated) for the DFT test and 
only for this test. Third row: rows used and step for the row. Fourth row: mode. (please, see §6.1.2). 
Range: max, optimize < 232; 
 Rows > 0; 
 m0, m1 enabled/disabled (if not equal to zero the mode is enabled). 
 
Section: [Maurer] 
min max step N 
block size (in bits) and step for the block size. This test needs N·2max·max bits (see §6.2 for a detailed 
description). 
Range: 2 ≤ min, max ≤ 16; N ≥ 40 (I suggest to use N ≥ 1000 because the test will be much more 
sensitive). 
 
Section: [Short blocks] 
min max step # BLOCK SIZE [bits]  
min max step # BITS DISTANCE [bits] 
first row: block size (in bits) and step for the block size; second row: bit distance and step for the bit 
distance (see §6.5 for a detailed description).  
RaBiGeTe allocates 2block_size · 4 bytes (2block_size unsigned longs). 
Important remark: for block size equal to 1 see §6.5.1. 
Range: block size < 32 

n / block size ≥ 5 · 2max 

 distance ≤ n / block size. 
 
Section: [Long blocks] 
min max step 
block size (in bits) and the step for the block size. 
Range: 2 ≤ min, max ≤ n. 
 
Section: [Autocorrelation] 
min max step 
distance (in bits) from the bits to test and step for the distance. 
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Range: 1 ≤ min, max ≤ ⎣n/4⎦. 
 
Section: [Windowed autocorrelation] 
min max step # DISTANCE (in blocks) 
min max step # BLOCK SIZE (in bits) 
first row: distance (in blocks) from the blocks to test and step for the distance; second row: block size (in 
bits). 
Range: distance: min ≥ 1 (see §6.3 for a detailed description) 
 block size: min  ≥ 1. 
 
Section: [Serial] 
min max step 
block size (in bits) and step for the block size. Setting the block size equal to 1 yields the Short blocks 
test with the block size and distance equal to 1. 
Important remark: for block size equal to 1 see §6.5.1. 
Range: max ≤ ⎣log2 n⎦ -2. 
 

m N m N m N
2 2 12 1116 22 1123736
3 4 13 2232 23 2247472
4 6 14 4424 24 4493828
5 12 15 8848 25 8987656
6 20 16 17622 26 17973080
7 40 17 35244 27 35946160
8 74 18 70340 28 71887896
9 148 19 140680 29 143775792

10 284 20 281076 30 287542736
11 568 21 562152 31 575085472

Section: [Non overlapping template matchings] 
min max step templates 
block size (in bits), step for the block size and number of the 
templates to test. 
The maximum number of the templates N for each block size m is 
showed in the table. If the user chooses max = 21, this test would 
generate 562152 p-values, but setting (for example) templates = 
20, only 20 templates will be used because the test will use 1 
template every ⎣562152 / 20⎦. 
Range: 2 ≤ min, max ≤ 31 and n > 8 · (2max-1 + max) 
 
Section: [Rank 6x8] 
min max step 
the test forms 100,000 6 x 8 binary matrix taking a byte starting from the specified position in the range 
min ÷ max incremented by step. 
Range: 0 ≤ min, max ≤ 24, step ≥ 1. 
 
Section: [AMLS] 
min max step 
block size (in kbits) and step for the block size. The block size can be only of the form 2x, this implies 
that the step can be only negative (please, see the section “test parameters”). 
Range: the current version of RaBiGeTe implements 11 ≤ min, max ≤ 25, step ≤ -1. 

4.2 Running the program 

Writing in a DOS prompt “rabigiete para.txt” (without quotation marks) the program loads the 
configuration file “para.txt” (the user can have several configuration files) and it checks all the 
configuration parameters. All the invalid parameters will be showed. 
Setting ShowPvals 1, the program will show all the p-values while it runs. Setting that parameter to 0, 
it will be showed only the elapsed time, the estimated left time and the estimated end date. 
The results are saved in the file specified with the parameter OutFile (the default is “_RaBiGeTe.txt”) 
along with all the p-values obtained from each test. Warning: any existing report will be overwritten 
without prompt. 
This is a typical output (when ShowPvals=1): 
 

n= 2097152 bits (2.000 Mb)   Started: 2004-03-28 11:46:23 
 

Sequence #1 
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DFT 1 0.1689395 
Short blk 8_1 0.4306630 
Short blk 10_1 0.6337714 
Maurer 6 0.1422819 
Maurer 8 -1.0000000 

 

Sequences length.

Test name.

Test parameter (the meaning
depends on the test type).

Sequence number. 
 
P-value. 
 
Failure indicator. When a test fails, -1
will be showed. This p-value will be
discarded from the overall results (in
this example I changed the original
value; it was 0.0056450). 

Starting date and time. 
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In the following table it is showed the meaning of the number displayed to the right of the test name and 
the required sequence length for each test: 
 

 Test name Displayed name Name meaning Bits required 
 AMLS AMLS s_n s: block size [kbits]; n: number of 

block tested 5 · 1024 · s 

 Autocorrelation Auto d d: distance [bits] 4 · n 

 Blocks'n'gaps Blk'n'gap / / 

 Coupon collector Coupon s_L s: block size [bits]; L: “reliability 
level” (see §6.7.1) / 

 Cumulative sum CuSum m M: mode (1= forward, 2= reverse) / 

 DFT DFT r_m r: row; m: mode 1000 · r (see §6.1) 

 GCD GCD stp / dst / 625,000 k 

 Long blocks Long blk m m: block size [bits] / 

 Maurer Maurer L L: block size [bits] N · 2L · L  (see §6.2.1) 

 Non overlapping template NOTM m_h m: block size [bits]; h: m-bit 
template in hexadecimal format (5 · 2m + m – 1) · 3 

 Permutation Permutation s_t s: block size [bits]; t: group size [s-
bit numbers] 5 · t! · t                                     (1)

 Rank for 31x31 matrices Rank 31x31 / 38,750 k 

 Rank for 32x32 matrices Rank 31x31 / 40,000 k 

 Rank for 6x8 matrices Rank 6x8 b b: starting bit 18,750 k 

 Runs Runs / / 

 Serial Serial m_x m: block size [bits]; x: p-value # (1 
or 2) 22+m

 Serial two-bit Two-bit / / 

 Short blocks Short blk s_d s: block size [bits]; d: distance 
[bits] Maximum of: 5 · 2s · s and d · s 

 SOB SOB / 67,108,889 (226+25) 

 Tough birthday spacings Bday / 62,5 M 

 Windowed autocorrelation AutoW m_d m: block size [bits]; d: distance 
[blocks] 

Maximum of: m · d and 
5 / C(m, m/2) + d + 1               (2)

 
(1): this lower bound may not be sufficient because the duplicated numbers inside a group are discarded. 
(2): C(m, m/2) is the binomial coefficient m! / (m/2)! / (m - m/2)!. 

4.3 Final reports 

Once the program terminated, it will show three reports: 

• Sequence-number overall result (from sequence #1 to sequence #NT); 

• Test-name overall result (for DFT test, autocorrelation test, serial test, …); 

• All the p-values overall result. 

 
As said in §2, only the second report should be considered. I included also the other reports because 
many people like them and they hope to get some useful information. But few trials should be enough to 
convince them that the first and the third reports are useless (and the first is really useless). 
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This is a typical report: 
Sequence #1 

… 
Sequence #10 

DFT 0.8901134 
AutoW 32_1 0.5799365 
Maurer 6 0.3831562 
Maurer 8 0.4501849 
Short blk 8_1 0.6138030 
Short blk 10_1 0.7039236 
Short blk 12_1 0.2913844 
Long blk 1024 0.6668296 
Long blk 1536 0.3188598 
Long blk 2048 0.1175366 
Auto 4 0.2465715 
Auto 12 0.8585987 
Runs 0.9430916 
Serial 8_1 0.6573969 
Serial 8_2 0.6312824 
Serial 10_1 0.7854912 
Serial 10_2 0.8785840 

 
SEQUENCE# KS AD   SL 
1 0.033642 0.005895   8.678 
2 0.151472 0.322141   4.270 
3 0.683455 0.513697   2.649 
4 0.497912 0.674255   2.077 
5 0.562399 0.709130   1.401 
6 0.057111 0.009835  13.527 
7 0.368998 0.203082   3.239 
8 0.643998 0.503060   1.790 
9 0.031508 0.046019   9.678 
10 0.304464 0.305524   4.099 
 
Overall 0.220205 0.047295   5.1408 

 
    
 

 
pvals     TEST name KS AD   SL 
10          DFT 1 0.599571 0.642290   1.979 
10     AutoW 32_1 0.173275 0.060226   9.529 
10       Maurer 6 0.340868 0.419206   5.801 
10       Maurer 8 0.978825 0.841863   1.033 
 9  Short blk 8_1 0.754328 0.789165   2.632 
10 Short blk 10_1 0.530824 0.742531   3.349 
 8 Short blk 12_1 0.296080 0.468922   5.224 
10  Long blk 1024 0.103148 0.084000  10.552 
10  Long blk 1536 0.539214 0.437632   4.856 
10  Long blk 2048 0.614148 0.714881   3.334 
10         Auto 4 0.568389 0.832119   1.909 
10        Auto 12 0.883638 0.852188   2.655 
10           Runs 0.557762 0.467999   2.884 
10     Serial 8_1 0.120280 0.090325   9.961 
10     Serial 8_2 0.204781 0.249436   5.158 
10    Serial 10_1 0.579496 0.427589   2.428 
10    Serial 10_2 0.077037 0.196975   8.699 

 
      Overall 0.401049 0.845519   4.8225 
 
All the 170 p-values KS AD SL 
Overall 0.008231 0.010875 1.397 
 

Overall KS, AD and SL for 
these p-values (sequence #10).

Overall KS, AD and SL for 
these p-values. 

AD test of these 
p-values

KS test of these 
p-values

mean of these 
square errors 

Overall KS, AD and SL for  all
the 10 DFT p-values (those
obtained from sequence #1 to
sequence #10). 
 
Weakness are showed by a
low KS or AD p-value (for
example < 0.001) and by a
high SL value (for example >
40). 

These numbers are the most
useful because with them it is
possible to see a systematic
failure of the generator. 

I suggest to skip this
report (setting

OverallTestNumber = 0)
because it is done over
heterogeneous values.

We can see a failure even
with a good generator.

Number of p-values 
generated by each test. 
The values 8 and 9 indicate 
that some sequence failed 
big the test. 

We get 17 p-values for 10 
times (from sequence #1 to 
sequence #10), so we have 
170 (heterogeneous) p-
values. For that reason this 
report is not very useful.  
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To check the distribution of the p-values I use three methods: Kolmogorov-Smirnov test, Anderson-
Darling test (which is a weighted variant of the former) and my Straight Line test. 
 
While the first two tests are well known, my SL test (although very simple) needs some explanation. 

4.3.1 The Straight Line test 

Like the other two tests (K-S and A-D), the SL test is used to see how much the distribution of the p-
values differs from the uniform distribution. 
Once the p-values have been sorted, we need to calculate these two errors: 
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where n is the number of p-values and pi is the ith p-value. 
With (1) we calculate the maximum square error for n p-values and with (2) the square error for the set 
of p-values under test. 
 
To get a more readable and useful result we calculate: 

ε
εε

max
% 100=  (3) 

which is the relative error expressed in percentage. 
 
This is a graphical example in which the points are the p-values (50, in this case) and the bold line is the 
ideal position of the p-values; it starts from (1;0) and ends at (n;1). 
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Figure 2: 

P44 = 0.9138 

44-1 
49 

= 0.8776 

ε44 = (0.8776 - 0.9138)2 = 0.0013 

The graph show how to check the distribution of the
p-values with my SL test. 

5 How to test the number generators 

Most of the tests in RaBiGeTe are intended for bit generators, but it is very easy to test also the structure 
of a b-bit number generator. 
 
With a number generator the sequence can be generated taking only the ith bit in the b-bit numbers. This 
way it is possible to see whether the generator has some non-random bit. 
Suppose we suspect that the generator has bad low order bits (like in the LCG). The sequence to test will 
be generated using, for example, only the least significant bit of each b-bit number generated. 
 
In the module “RBG.cpp” of RaBiGeTe, there are several examples which show how to take only the ith 
bit. For example, to test the 3rd bit (starting from the lsb) of the lfsr113 32-bit number generator we just 
need the line: 

for(int k=0; k<n; k++) set_bit( k, ( lfsr113() >> 2 )&1, bits) 
where n is the sequence length. 
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That line of code is also useful to highlight the relationship between the SOB test (a bit generator test) 
and the gorilla test (a 32-bit generator test) of Diehard (from which the SOB test derives): that line in 
RaBiGeTe is exactly the same of k=29 in the gorilla test (please, see the DH source code). 

6 Test description 

6.1 Discrete Fourier Transform test 

This test is very sensitive because it has showed the ability to see weakness even with few kbits. This 
feature makes it very well suited for testing true-RNG’s (which often are very slow). 
 
The N-bit sequence x0 ÷ xN-1 is arranged in an nx rows by ny columns array and it is transformed using a 
2-D discrete Fourier transform. The user specifies the parameter nx and RaBiGeTe calculates ny = ⎣N/nx⎦. 
If nx = 1 the test becomes the “usual” 1-D DFT test (like the old DFT test). 
RaBiGeTe allows the user to store the bits in two ways: the mode 0 stores the bits sequentially (in the 
row order) and the mode 1 stores the bits in column order: 
 

 
0 

ny 

0 0 1 2 3 4 
5 6 7 8 9 
10 11 12 13 14 nx

 

15 16 17 18 19 

  
0 

ny 

0 0 4 8 12 16
1 5 9 13 17
2 6 10 14 18nx

 

3 7 11 15 19

 

 the
in

 
Once the input bits have b
X(r, ⎣ny/2⎦) for 0 ≤ r < nx: 

 
The imaginary components
the statistic: 

 
(Im[X] means the imagina
is discarded. 
For each sequence RaBiGe
showed as “DFT r_m” (whe
displayed as “DFT 1” becau

6.1.1 Proof 

The mean of each bit is ½ 
Calculate the imaginary pa

its mean is: 

which is 0. 
For the variance we have: 
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which is N/8. 
The sum (1) is over N random variables from –1 ÷ +1; this is a sufficient condition for which the central 
limit theorem holds for si, this means that the distribution is well approximated by a normal distribution 
as N gets bigger. Also few hundreds of bits have a very good normal distribution, but, to make the test 
sensitive, I suggest to use at least 1000 or 2000 bits. 

6.1.2 RaBiGeTe implementation 

RaBiGeTe includes the fast and reliable FFTW library to calculate the DFT of the input bits. 
Here I’ll give a brief description of the library. For a detailed description see the FFTW home page 
http://www.fftw.org/ or the paper “FFTW: An adaptive software architecture for the FFT” by Matteo Frigo 
and Steven G. Johnson. 
 
FFTW used in RaBiGeTe is a DLL which includes the support for float, double and long double types. 
Changing the #if directive in the module tDFT.cpp, it is possible to choose the float type or the double 
type (the long double type is not supported by RaBiGeTe). 
The default type in RaBiGeTe is the float type which takes about 2/3 of the running time needed for the 
double type and the error is usually around 10-4, 10-3. 
 
FFTW is very fast when the sequence length N is of the form 2a·3b·5c·7d·11e·13f, where e + f is either 0 or 
1 and the other exponents are arbitrary. Other N’s are computed using a slower algorithm which 
nevertheless retains O(N log N) performance even for prime N’s (see “fftw3.pdf” on page 24). 
To take full advantage of that, I included the parameter DFToptimize; when N is greater than 
DFToptimize, RaBiGeTe calculates the biggest N’ ≤ N of the form 2a·3b·5c·7d·11e·13f with e + f equal to 
either 0 or 1 and arbitrary a, b, c and d. 
For example, if N = 3524034 bits and DFToptimize = 3000000, then RaBiGeTe will use N’ = 
29·30·54·70·111·130 = 3520000 bits so that the sequence will be only 4034 bits shorter (about 0,1% 
shorter). With the same N, but with DFToptimize = 4000000, RaBiGeTe will use N’ = N (and this will 
lead to a slower running speed). 
 
FFTW has another interesting feature which is useful to speed up the start-up phase: the wisdom. It is an 
internal state that FFTW uses to find the best algorithm to calculate the DFT. 
RaBiGeTe saves the wisdom so that it can be reloaded prior to executing the DFT test (saving most of the 
start-up phase time). The wisdom file name will be “DFTwisdom_f” (for float type) or “DFTwisdom_d” (for 
double type). 
If a problem is encountered during the saving or loading of the wisdom, RaBiGeTe will show a warning 
message; but this kind of problem will not affect the results (the running time will be a bit longer). 

6.2 Maurer’s universal statistical test 

This test was proposed by Ueli M. Maurer. It is specified by three positive integer-valued parameters: L, 
Q and K. The sequence to test is partitioned into adjacent non-overlapping L-bit blocks. The sequence 
length is N = (Q + K) · L bits, where Q is the number of the L-bit blocks for the initialization step and K is 
the number of the L-bit blocks to test. 

6.2.1 RaBiGeTe implementation 

The N-bit sequence is partitioned into adjacent non-overlapping L-bit blocks with 2 ≤ L ≤ 16, so we can 
think the sequence as formed by n = ⎣N/L⎦  L-bit numbers, from x0 ÷ xn-1. 
Starting from i = 0, store in a table T the index i (the position) of the last occurrence of xi. When all the 
possible 2L L-bit numbers occurred, set Q = i (the index of the last number occurred and stored in the 
table) and K = n – Q. Calculate the test statistic 
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where Ai = i – T(xi) (the number of positions since the last occurrence of the number xi). 
Take the tabulated values for E[fTu(L,K)] and Var[fTu(L,K)], then the statistic 
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approximately follows a standard normal distribution. The resulting p-value is obtained by doing a two-
sided test. 

6.2.2 Test improvements 

Usually the algorithm explained in the literature is not very optimized, so I slightly changed it in my 
implementation. 
 

First improvement

The precise calculation of the mean and the variance (E[fTu(L,K)] and Var[fTu(L,K)]) requires a 
considerable computing effort. 
Many implementations use a simplified (and fast) formula for the mean and the variance, but in this case 
the error in the reported p-value can be too big. 
 
In my program I use tabulated values for the mean and the variance along with a formula of the kind 
Var[fTu(L,K)] = f(L,K) which for K ≥ 33 · 2L has an excellent approximation. 
 

Second improvement

Usually in the literature it is written that the N-bit sequence should be partitioned into two segments: Q ≥ 
10 · 2L L-bit blocks and K ≥ 1000 · 2L L-bit blocks, but this seems not efficient for two reasons: 
 

• sometimes Q is too small and the initialization phase leaves empty some table position. Putting n 
in those positions reduces the sensitiveness of the test; 

• sometimes to fill the table are needed less of Q L-bit blocks and the initialization phase could 
terminate leaving some block for the second phase (the important one).  

 
For those two reasons I changed the “classic” algorithm as explained above: Q is not a fixed number; the 
initialization phase terminate as soon as the table is totally filled, then the program checks whether K ≥ 
33 · 2L, if the condition is not satisfied the test returns with an error message. 
K can be changed using the N parameter in the section “Maurer” (see §4.1). It sets the numbers of L-bit 
block used by this test (it is the above n). The test will need N · 2Lmax · Lmax bits. 
 
Suppose that L = 12 and N = 1000; we need n = 49152000 bits (4096000 12-bit blocks). 
Running the test, suppose the initialization phase takes Q = 34816 (8.5 · 2L, instead of 10 · 2L), so K = 
4061184 (991.5 · 2L) and we have (10 - 8.5) · 2L = 6144 more 12-bit blocks to test. 

6.3 Windowed autocorrelation test 

The test is intended to show how much the bits in a sequence are correlated. 
The n-bit sequence is partitioned into N = ⎣n/m⎦ non-overlapping m-bit blocks with m ≥ 1, any leftover bit 
is discarded. 
All the blocks Bi and Bi+d (0 ≤ i < N-d) are processed in pairs to see whether the bits in the same position 
pos (0 ≤ pos < m) are different. Let c be the number of the different bits inside each block, it can range 
from 0 (all the bits are equal) to m (all the bits are different). The c’s follow a binomial distribution: 
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where Pp(c|m) is the probability to see c different bits in a m-bit block and p is the probability to see 0 or 
1 in the sequence. For a random sequence p = ½ and the formula becomes: 
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The c’s obtained from the test are compared with the expected values using the chi-square test with m-1 
degrees of freedom: 
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The reported p-value is the probability P(X > χ2) where X is a random variable. 
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6.3.1 RaBiGeTe implementation 

With this test can be useful to use small m (e.g. 8, 16 bits), but also big m (e.g. 2000, 4000 bits), so the 
binomial coefficient (m! / c! / (m-c)!) cannot be calculated in a straightforward way because even using 
the long double C++ type, the maximum block size would be 1754 (1755! = 3.4736·104933, while the 
maximum value a long double can handle is about 1.1·104932). 
 
Knowing that m! = 2 · 3 · … · (m-1) · m, we can write ln m! = ln 2 + ln 3 + … + ln (m-1) + ln m. 
Knowing that ln (a/b) = ln a- ln b, we can write ln [m! / c! / (m-c)!] = ln m! – ln c! – ln (m-c)!. 
Calculating the logarithm of the binomial coefficient instead of the binomial coefficient, we can use m well 
beyond any useful limit. 
 
In the equation 1 in §6.3, there is the coefficient 2-m. Also in this case we can use the logarithm: ln 2-m = 
-m · ln 2. 
 
With all these substitutions, the equation 1 becomes: 
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With the exponentiation of both members we get P0.5(c|m). 

6.4 SOB test 

This acronym means “Sparse Occupancy Bitstream”. 
It works like the gorilla test in the Diehard suite, the only difference is that my SOB test is intended for 
random bit generators, while the gorilla test is intended for random 32-bit number generators. See §5 to 
know how to test a particular bit of a b-bit number generator. 
 
The (226+25)-bits sequence is divided into 26-bit blocks and it is scanned to count how many blocks do 
not appear. That count should be approximately normal distributed with mean 24687971 and standard 
deviation 4170, so that the statistic: 

4170
24687971−

=
wz   

has an approximated standard normal distribution. The reported p-value is the probability P(X < z) where 
X is a random variable. 

6.5 Short blocks test 

This test can be said a generalized version of the FIPS140 poker test because with my version the user 
can change the block size and the distance at which the bits are taken. 
Setting both distance and block size equal to 1 yields the NIST and FIPS140 frequency (monobit) test and 
the NIST serial test with block size equal to 1 (only the p-value #1). Setting the distance equal to 1 and 
the block size equal to 4 yields the FIPS140 poker test. 
 
Let s be the block size and d the bit distance with s, d ≥ 1. The n-bit sequence is partitioned into s-bit 
disjoint blocks, any leftover bit is discarded. Each block is formed by taking s bits at a distance d, so the 
first block is formed by taking the bits 0, d, 2d, 3d, …, (s-1)·d; the second block is formed by taking the 
bits 1, d+1, 2d+1, 3d+1, …, (s-1)·d+1 and so on. 
The s bits are converted in a number which can range form 0 to 2s-1, so we have 2s bins. In a random or 
pseudo-random sequence it is expected to see n / 2s / s numbers in each bin. 
The c numbers contained in each bin are compared with the expected values using the chi-square test 
with 2s-1 degrees of freedom: 
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The reported p-value is the probability P(X > χ2) where X is a random variable. 
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Suppose we have a 30-bit sequence (from bit 0 to bit 29), block size s=3 and bit distance d=4. The first 
block is formed taking the bits 0, 4 and 8; the second block is formed taking the bits 1, 5 and 9, …, the 
fourth block is formed taking the bits 3, 7 and 11 as showed in the following scheme: 
 
 
 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2nd multi-block 

 
 
 

4th block 

3rd block 

2nd block 

1st block 

Discarded bits

1st block 3rd block 2nd block 4th block  
1st “multi-block” 0 4 8  1 5 9  2 6 10  3 7 11 

 
2nd “multi-block” 12 16 20  13 17 21  14 18 22  15 19 23 s-bit number

6.5.1 RaBiGeTe implementation 

When the block size is equal to 1 (and only in this case), different distances will produce the same p-
values. 
This is true, for example, for distances of the form 2x for any integer x ≥ 0. Let p(s,d) the p-value 
obtained for block size s and distance d; we have for any sequence: p(1,1) = p(1,2) = p(1,4) = … = 
p(1,8192) and so forth. Moreover we have: p(1,6) = p(1,12), p(1,1536) = p(1,3072) and many other 
equalities. 
But those equalities are unwanted because the overall results would have distorted by many equal p-
values. So RaBiGeTe discards all the duplicated p-values. Nevertheless, it is still possible to see equal p-
values if the parameter pval_digits is small enough. 
 
This test with s=1 and d=1 gives the same p-value of the serial test with the block size equal to 1. For 
this reason, when this test is enabled with min_blk_size = 1 and min_bit_distance = 1, the serial test 
with block size = 1 will be skipped. 

6.6 Permutation test 

The n-bit sequence is partitioned into N = ⎣n/s⎦ non-overlapping s-bit blocks with 2 ≤ s ≤ 12, any leftover 
bit is discarded. The s-bit blocks are converted in N numbers from 0 to 2s-1. 
Then t numbers are grouped; if there is duplicate numbers inside the t-number group, the group is 
discarded. 
When a valid group is found, it is scanned to calculate an index which characterizes the ordering of the t 
numbers inside the group. Let ui the ith s-bit number with 1 ≤ i ≤ t, then an index f is calculated for u0 < 
u1 < … < ut, u1 < u0 < … ut, …, ut < … < u1 < u0, in other words we have different f’s for different 
orderings. 
All the f’s are binned in Fi and compared with the expected counts using a chi-square test with t!-1 
degrees of freedom: 
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where Nvalid is the number of the valid groups found (the ones with no duplicate numbers) and pi = 1 / t!. 
 

The reported p-value is the probability P(X > χ2) where X is a random variable. 

6.7 Coupon collector’s test 

The n-bit sequence is partitioned into ⎣n/s⎦ non-overlapping s-bit blocks with s ≥ 2, any leftover bit is 
discarded. The s-bit blocks are converted in numbers from 0 to 2s-1 
Let r be the consecutive s-bit numbers required to get a set of all the numbers from 0 to d-1 (where 
d=2s). The sequence is scanned to count such r’s and these counts are stored in Cr. 
Obviously there is a lower bound for r (r ≥ d, i.e. we need at least d numbers to see all the numbers from 
0 to 2s-1), but there is no upper bound, so when r ≥ t (an “arbitrarily” chosen constant) we increment the 
count for t (not for r). 
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When all the bits are scanned we have t-d bins from Cd to Ct-1 (for d ≤ r < t) and the bin Ct (for r ≥ t). 
 
Let N be the number of complete sets of coupons and Pi the probability for Ci, then the C’s are compared 
with the expected values using the chi-square test with t-d+1degrees of freedom: 

( )∑
=

−
=

t

di i

ii

Np
NpC 2

2χ   

The probability to see r counts is Pr= d! / dr · S(r-1,d-1) for d ≤ r < t and Pt= 1 – d! / dt-1 · S(t-1,d) where 
S(n,m) is the Stirling number of the second kind. 
 

The reported p-value is the probability P(X > χ2) where X is a random variable. 

6.7.1 RaBiGeTe implementation 

The calculation of Pi involves very big numbers and a multi-precision library is needed, so I have stored in 
a file (“coupon_prob.txt”) the P’s which RaBiGeTe needs. 
The default file contains the P’s for block size s from 2 to 9 bits and the constant t has been chosen so 
that Pt < 0.03, this way the counts Ci have a sufficient degree of significance because they are not all 
accumulated in Ct (with Pt = 0.03, Ct should contain only about 3% of the coupons). 
Moreover, the smallest probability saved in the file is Prmin ≥ 5·10-8 this means that the expected count 
N·Pi is at least 5 when the bin contains 108 numbers (with such a small probability the test is very 
sensitive). The remaining probabilities (Pr < 5·10-8 from d to rmin) are summed up in a single bin. 
 
When the expected number of coupons in a bin is less than 5, RaBiGeTe collects the counts Ci until the 
expected number is at least 5. But when many bins are collected the test become unreliable (it fails even 
with good generators). 
To avoid that, RaBiGeTe calculates a “reliability level”: L = (N - Ct) / (t - rmin), where N - Ct is the number 
of complete sets of coupons excluding the cumulative bin (Ct) and t - rmin is the number of available bins, 
this means that L is approximately the number of coupons expected in each bin. 
The test becomes unreliable for L < 3.6, so that RaBiGeTe discards such tests. 

6.8 Non overlapping template matchings 

This is a NIST’s test and it is explained in the NIST Special Publication 800-22 (available as a pdf file: 
“SP800-22.pdf”). 
The original NIST’s version seems too “weak” because almost any generator pass this test (even the very 
bad ones), so I changed the code to programmatically calculate the test parameters. 
 
To understand how I have improved this test, I’ll give a brief description; for a complete description see 
the NIST’s paper. 
 
The n-bit sequence is partitioned into N independent blocks (the NIST’s version uses N=8), so each 
independent block has M= ⎣n/N⎦ bits. The N blocks are scanned to count how many aperiodic patterns 
there are in the sequence. Once the N blocks have been scanned, we have N counts (or bins) which are 
compared with the expected count E[w] = (M-m+1)/2m using the chi-square test (m is the block size). 
 
The weakness in the NIST’s version is the small N; so RaBiGeTe calculates N for any sequence length and 
block size. It first tries to find N for which E[w]=100 (this means 100 counts in each bin) with 3 ≤ N ≤ 
1000. If N lies outside that range, the program sets N=3 or N=1000 and then it calculates E[w]. If 
E[w]<5 the test is skipped. 
This way, this test is much more sensitive and it is able to detect the most common weak generators. 

6.9 AMLS test 

The test is based on the Michael Mitzenmacher’s “Advanced Multi-Level Strategy” in which the bits are 
generated by applying Von Neumann’s rule to the sequences in some fixed order (the AMLS is a very 
efficient unbiaser). 
 
This test is purely empirical; this means that I found the expected mean and variance of the used 
parameter by extensive simulations (I tested more than 9 Tbits obtained from strong cryptographic 
primitives like RC6, AES, Serpent and SHA-1). 
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Although this test might seem insensitive with usual PRNG, I wanted to include it in the suite because it 
seems sensitive when a good random or pseudo-random source is mixed with a biased hardware source 
(I said “hardware” to mean the common bias found in that kind of sources). In my experiments many 
tests have not been able to discriminate bad sequences with that kind of generators, but the AMLS test 
has shown the bias. 
 
As the name says, the unbiaser has several levels (from 0 to Lmax) in which the bits are stored; the one 
used in RaBiGeTe has 11 ≤ Lmax ≤ 25. When the test starts all the levels are empty. 
The n-bit sequence is partitioned into N independent blocks, so that each block has M= ⎣n/N⎦ bits. The 
size of the blocks used in RaBiGeTe is of the form M = 2L, this means that 2 ≤ M ≤ 32768 kbits or         
211 ≤ M ≤ 225 bits. 
 
The M-bit blocks are elaborated by an algorithm which iteratively applies the Von Neumann’s method to 
generate a new bit and to store it in the appropriate level (the position depends on the status of the 
levels). 
With a biased generator many bits will be discarded, while with a good generator only few bits will be 
discarded. 
As soon as the higher level is full, the test stops; at this time exactly 2Lmax bits have been processed by 
the unbiaser and C bits have been emitted. 
 
For any given Lmax (or for any given input block size M) the C’s are approximately normal distributed with 
mean E[C] and variance Var[C], so that the statistic: 
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has an approximated χ2 distribution with N degrees of freedom. The reported p-value is the probability 

P(X > χ2) where X is a random variable. 

6.9.1 RaBiGeTe implementation 

Let µ the true mean of C and σ2 the true variance; extensive simulations showed that the test becomes 
unreliable when Var[C] is outside the interval ±1.28 σ2 for any block size. 
For E[C] the “relative tolerance” is much smaller and it is different for different block size. For example, 
for M = 2 kbits the test is unreliable for 0.997µ ≤ E[C] ≤ 1.003µ (or ±0.003µ); for M = 64 kbits the 
interval is ±0.0003µ and for M = 8192 kbits the interval is ±1.5·10-5 µ. 
To avoid that E[C] and Var[C] fall outside those intervals, the confidence intervals have been calculated 
at a confidence level 1-α: 
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The following table shows the confidence interval equal to 99.9% and the samples tested: 
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Block 
size 

Mean Variance Samples tested 

kbits min E[C] max ε1   
(1) min Var[C] Max ε2    

(2) Blocks Gbits 
2 1820.6773 1820.6821 1820.6868 5.24e-6 98.61 98.673 98.736 0.0013 52617712 100.4 
4 3725.9313 3725.9403 3725.9493 4.83e-6 159.8 159.954 160.11 0.0019 23920000 91.2 
8 7590.6487 7590.6663 7590.6839 4.64e-6 257.6 257.976 258.35 0.0029 10092000 77.0 

16 15408.137 15408.167 15408.197 3.93e-6 414.45 415.276 416.1 0.0040 5500000 83.9 
32 31185.879 31185.925 31185.972 2.95e-6 666.73 668.317 669.91 0.0048 3824000 116.7 
64 62972.627 62972.676 62972.726 1.58e-6 1072.6 1074.79 1077 0.0041 5255200 320.8 

128 126920.64 126920.71 126920.78 1.11e-6 1728.9 1732.77 1736.7 0.0045 4218800 515.0 
256 255422.87 255422.96 255423.04 6.85e-7 2787.2 2793.34 2799.5 0.0044 4427900 1081.0 
512 513408.55 513408.74 513408.93 7.49e-7 4494.8 4512.02 4529.3 0.0076 1480500 722.9 

1024 1030967.8 1030968.3 1030968.8 1.01e-6 7255.6 7314.56 7374.1 0.0162 330000 322.3 
2048 2068656.3 2068657.4 2068658.5 1.05e-6 11601 11757.3 11917 0.0269 119780 233.9 
4096 4148191 4148192.5 4148194 7.13e-7 18732 19002 19277 0.0287 105216 411.0 
8192 8313992.2 8313993.9 8313995.5 3.97e-7 30458 30841.8 31232 0.0251 137530 1074.5 

16384 16656478 16656480 16656483 2.56e-7 49429 50062.8 50708 0.0255 132930 2077.0 
32768 33359070 33359073 33359077 1.95e-7 79561 80781.4 82028 0.0305 92892 2902.9 

 

(1)  ε1 = (E[C]max - E[C]min) / E[C]. 
(2)  ε2 = (Var[C]max - Var[C]min) / Var[C]. 
 
As we can see, ε1 and ε2 are much smaller than the requested limits, this ensure a good sensitivity. 
Another way to always ensure a good level of sensitivity is that at least 5 C’s must be obtained from the 
input sequence; for example, if one wants to use 2048-kbit blocks, then the sequence length must be at 
least 2048 · 5 = 10 Mbits. 
This test is usually more sensitive with big block size; 32768-kbit blocks are usually the most sensitive, 
but the speed is much slower compared to the one obtained with 2-kbit blocks. 
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